4.8 Article

General Theory for Bilayer Stacking Ferroelectricity

期刊

PHYSICAL REVIEW LETTERS
卷 130, 期 14, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.130.146801

关键词

-

向作者/读者索取更多资源

In this paper, a theory of bilayer stacking ferroelectricity (BSF) is proposed, which explains the ferroelectric behavior in stacked layers of the same 2D material with different rotation and translation. The theory is supported by group theory analysis and first-principles simulations, and it provides a new perspective and a solid foundation for designing a variety of bilayer ferroelectrics. The study also highlights the potential application of manipulating the electric polarization in the bilayer.
Two-dimensional (2D) ferroelectrics, which are rare in nature, enable high-density nonvolatile memory with low energy consumption. Here, we propose a theory of bilayer stacking ferroelectricity (BSF), in which two stacked layers of the same 2D material, with different rotation and translation, exhibit ferroelectricity. By performing systematic group theory analysis, we find all the possible BSF in all 80 layer groups (LGs) and discover the rules about the creation and annihilation of symmetries in the bilayer. Our general theory can not only explain all the previous findings (including sliding ferroelectricity), but also provide a new perspective. Interestingly, the direction of the electric polarization of the bilayer could be totally different from that of the single layer. In particular, the bilayer could become ferroelectric after properly stacking two centrosymmetric nonpolar monolayers. By means of first-principles simulations, we predict that the ferroelectricity and thus multiferroicity can be introduced to the prototypical 2D ferromagnetic centrosymmetric material CrI3 by stacking. Furthermore, we find that the out-of-plane electric polarization in bilayer CrI3 is interlocked with the in-plane electric polarization, suggesting that the out-of-plane polarization can be manipulated in a deterministic way through the application of an in-plane electric field. The present BSF theory lays a solid foundation for designing a large number of bilayer ferroelectrics and thus colorful platforms for fundamental studies and applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据