4.8 Article

Engineering Transistorlike Optical Gain in Two-Dimensional Materials with Berry Curvature Dipoles

期刊

PHYSICAL REVIEW LETTERS
卷 130, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.130.076901

关键词

-

向作者/读者索取更多资源

The study finds that low-symmetry two-dimensional metallic systems can achieve distributed transistor response and characterizes the optical conductivity. By applying strain to bilayer graphene, optical gain can be realized, leading to a distributed transistor response.
Transistors are key elements of electronic circuits as they enable, for example, the isolation or amplification of voltage signals. While conventional transistors are point-type (lumped-element) devices, it may be interesting to realize a distributed transistor-type optical response in a bulk material. Here, we show that low-symmetry two-dimensional metallic systems may be the ideal solution to implement such a distributed-transistor response. To this end, we use the semiclassical Boltzmann equation approach to characterize the optical conductivity of a two-dimensional material under a static electric bias. Similar to the nonlinear Hall effect, the linear electro-optic (EO) response depends on the Berry curvature dipole and can lead to nonreciprocal optical interactions. Most interestingly, our analysis uncovers a novel non-Hermitian linear EO effect that can lead to optical gain and to a distributed transistor response. We study a possible realization based on strained bilayer graphene. Our analysis reveals that the optical gain for incident light transmitted through the biased system depends on the light polarization, and can be quite large, especially for multilayer configurations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据