4.8 Article

Frictional Weakening of Vibrated Granular Flows

期刊

PHYSICAL REVIEW LETTERS
卷 130, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.130.118201

关键词

-

向作者/读者索取更多资源

We computationally study the frictional properties of sheared granular media subjected to harmonic vibration applied at the boundary. We find that weakening requires the absolute amplitude squared of the displacement to be sufficiently large relative to the confining pressure and that a previously unrecognized second process dependent on dissipation contributes to shear weakening under vibrations. This analysis provides a basis for predicting flows subjected to arbitrary external vibration.
We computationally study the frictional properties of sheared granular media subjected to harmonic vibration applied at the boundary. Such vibrations are thought to play an important role in weakening flows, yet the independent effects of amplitude, frequency, and pressure on the process have remained unclear. Based on a dimensional analysis and DEM simulations, we show that, in addition to a previously proposed criterion for peak acceleration that leads to breaking of contacts, weakening requires the absolute amplitude squared of the displacement to be sufficiently large relative to the confining pressure. The analysis provides a basis for predicting flows subjected to arbitrary external vibration and demonstrates that a previously unrecognized second process that is dependent on dissipation contributes to shear weakening under vibrations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据