4.8 Article

Emergent Glassy Behavior in a Kagome Rydberg Atom Array

期刊

PHYSICAL REVIEW LETTERS
卷 130, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.130.206501

关键词

-

向作者/读者索取更多资源

We perform large-scale quantum Monte Carlo simulations on a realistic Hamiltonian of kagome-lattice Rydberg atom arrays and analyze their static and dynamic properties. We find emergent glassy behavior in a region of parameter space between two valence bond solid phases. The extent and phase transitions of this glassy phase as well as its slow time dynamics and experimental considerations for its detection are discussed. Our proposal opens up a new route to studying real-time glassy phenomena and highlights the potential for quantum simulation of distinct phases of quantum matter.
We present large-scale quantum Monte Carlo simulation results on a realistic Hamiltonian of kagome-lattice Rydberg atom arrays. Although the system has no intrinsic disorder, intriguingly, our analyses of static and dynamic properties on large system sizes reveal emergent glassy behavior in a region of parameter space located between two valence bond solid phases. The extent of this glassy region is demarcated using the Edwards-Anderson order parameter, and its phase transitions to the two proximate valence bond solids-as well as the crossover towards a trivial paramagnetic phase-are identified. We demonstrate the intrinsically slow (imaginary) time dynamics deep inside the glassy phase and discuss experimental considerations for detecting such a quantum disordered phase with numerous nearly degenerate local minima. Our proposal paves a new route to the study of real-time glassy phenomena and highlights the potential for quantum simulation of a distinct phase of quantum matter beyond solids and liquids in current-generation Rydberg platforms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据