4.6 Article

Modal phase-locking in multimode nonlinear optical fibers

期刊

OPTICS LETTERS
卷 48, 期 14, 页码 3677-3680

出版社

Optica Publishing Group
DOI: 10.1364/OL.494543

关键词

-

类别

向作者/读者索取更多资源

Spatial beam self-cleaning in graded-index multimode fibers, arising from the Kerr effect, involves nonlinear power transfer among modes to produce robust bell-shaped output beams. Although spatial coherence of the output beam has been experimentally demonstrated, direct study of modal phase evolutions has been lacking. Using a holographic mode decomposition method, our findings reveal nonlinear spatial phase-locking between the fundamental mode and neighboring low-order modes, confirming theoretical predictions and challenging the current belief of wave thermalization as the sole cause of the spatial beam self-cleaning effect.
Spatial beam self-cleaning, a manifestation of the Kerr effect in graded-index multimode fibers, involves a nonlinear transfer of power among modes, which leads to robust bell-shaped output beams. The resulting mode power distribution can be described by statistical mechanics arguments. Although the spatial coherence of the output beam was experimentally demonstrated, there is no direct study of modal phase evolutions. Based on a holographic mode decomposition method, we reveal that nonlinear spatial phase-locking occurs between the fundamental and its neighboring low-order modes, in agreement with theoretical predictions. As such, our results dispel the current belief that the spatial beam self-cleaning effect is the mere result of a wave thermalization process. (c) 2023 Optica Publishing Group

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据