4.6 Article

Controllable self-rotating array beam with an arc-shaped accelerating trajectory

期刊

OPTICS EXPRESS
卷 31, 期 8, 页码 12150-12161

出版社

Optica Publishing Group
DOI: 10.1364/OE.486686

关键词

-

类别

向作者/读者索取更多资源

In this study, a modified interfering vortex phase mask (MIVPM) is proposed to generate a new type of self-rotating beam. The MIVPM is based on a conventional and stretched vortex phase for generating a self-rotating beam that rotates continuously with increasing propagation distances. This study proves that this self-rotating array beam has an effectively enhanced central lobe and reduced side lobe owing to adding a vortex phase mask compared with a conventional self-rotating beam.
In this study, a modified interfering vortex phase mask (MIVPM) is proposed to generate a new type of self-rotating beam. The MIVPM is based on a conventional and stretched vortex phase for generating a self-rotating beam that rotates continuously with increasing propagation distances. A combined phase mask can produce multi-rotating array beams with controllable sub-region number. The combination method of this phase was analyzed in detail. This study proves that this self-rotating array beam has an effectively enhanced central lobe and reduced side lobe owing to adding a vortex phase mask compared with a conventional self-rotating beam. Furthermore, the propagation dynamics of this beam can be modulated by varying the topological charge and constant a. With an increase in the topological charge, the area crossed by the peak beam intensity along the propagation axis increases. Meanwhile, the novel self-rotating beam is used for optical manipulation under phase gradient force. The proposed self-rotating array beam has potential applications in optical manipulation and spatial localization.(c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据