4.6 Article

High-performance designs for fiber-pigtailed quantum-light sources based on quantum dots in electrically-controlled circular Bragg gratings

期刊

OPTICS EXPRESS
卷 31, 期 9, 页码 14750-14770

出版社

Optica Publishing Group
DOI: 10.1364/OE.486060

关键词

-

类别

向作者/读者索取更多资源

This paper presents a numerical investigation of directly fiber-coupled hybrid circular Bragg gratings (CBGs) featuring electrical control for operation in the application relevant wavelength regimes. The proposed high-performance designs combine hybrid CBGs with a dielectric planarization and a transparent contact material, enabling high direct fiber coupling efficiency and exhibiting Purcell factors. The identified designs can sustain expected fiber efficiencies and average Purcell factors assuming conservative fabrication accuracies, and electrical field strengths suitable for Stark-tuning of an embedded quantum dot can be reached.
We present a numerical investigation of directly fiber-coupled hybrid circular Bragg gratings (CBGs) featuring electrical control for operation in the application relevant wavelength regimes around 930 nm as well as the telecom O-and C-band. We use a surrogate model combined with a Bayesian optimization approach to perform numerical optimization of the device performance which takes into account robustness with respect to fabrication tolerances. The proposed high-performance designs combine hybrid CBGs with a dielectric planarization and a transparent contact material, enabling > 86% direct fiber coupling efficiency (> 93% efficiency into NA 0.8) while exhibiting Purcell factors > 20. Especially the proposed designs for the telecom range prove robust and can sustain expected fiber efficiencies of more than (82.2 +/- 4.1)+2.2 -5.5% and expected average Purcell factors of up to (23.2 +/- 2.3)+3.2 -3.0 assuming conservative fabrication accuracies. The wavelength of maximum Purcell enhancement proves to be the most affected performance parameter by the deviations. Finally, we show that electrical field strengths suitable for Stark-tuning of an embedded quantum dot can be reached in the identified designs. Our work provides blueprints for high-performance quantum light sources based on fiber-pigtailed and electrically-controlled quantum dot CBG devices for quantum information applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据