4.7 Article

Assessment of SWAN and WAVEWATCH-III models regarding the directional wave spectra estimates based on Eastern Black Sea measurements

期刊

OCEAN ENGINEERING
卷 272, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.oceaneng.2023.113944

关键词

Directional wave spectra; Spectral wave estimates; SWAN; WaveWatch III; Black Sea; Wave modelling

向作者/读者索取更多资源

The study evaluates the accuracy of SWAN and WAVEWATCH-III (WWIII) models for directional wave spectra estimates based on measurements conducted in the eastern Black Sea. It is found that the SWAN model fits better the average variance density shape at all frequency ranges, but slightly overestimates in the 0.13-0.17 Hz range. On the other hand, the WWIII model shows better correspondence in the 0.13-0.17 Hz frequency range, but underestimates the lower frequency energies and overestimates higher frequency ranges. Therefore, the SWAN model is recommended for spectral density estimation at seasonal and annual scales.
The spectral wave models are often calibrated or validated based on bulk wave data derived from spectral in-formation such as the significant wave height (Hs) and mean period (Tm). However, the precision in the hind-casted spectral data was not evaluated in many seas, such as the Black Sea, due to the lack of spectral wave measurements. As part of this study, a spectral wave measuring buoy was installed near the cape Small Utrish to collect the spectral measurement data. The study objective is to assess the SWAN and WAVEWATCH-III (WWIII) models regarding the directional wave spectra estimates based on measurements conducted in the eastern Black Sea. For this purpose, the estimated spectral density distribution and spectral mean direction in terms of spectral frequency bins are assessed for both SWAN and WWIII outputs. The biases in variance densities are firstly calculated for both models at each frequency based on 14 710 spectral measurements, as well as the biases in the annual and seasonal averages. In addition, the correlation coefficients and root mean squared errors at each frequency are calculated and discussed. The accuracies in the mean direction at each spectral shape over the whole measurement period are secondly evaluated. Thirdly, the annual and seasonal averaged two-dimensional wave spectrums are discussed compared to measurements. The performances of both models are lastly verified based on bulk data measured at 8 locations on different coasts of the Black Sea. The results show that SWAN output fits better the average variance density shape at all frequency ranges f > 0.08Hz. However, it slightly overestimates the variance density in the 0.13-0.17 Hz range. In contrast to the SWAN model, WWIII data show only better correspondence in the 0.13-0.17 Hz frequency range but underestimate the lower frequency energies and overestimate higher frequency ranges. The SWAN model is therefore recommended for the spectral density estimate at seasonal and annual scales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据