4.8 Article

Scalable and programmable phononic network with trapped ions

期刊

NATURE PHYSICS
卷 19, 期 6, 页码 877-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41567-023-01952-5

关键词

-

向作者/读者索取更多资源

A minimal-loss programmable phononic network is demonstrated, which can deterministically prepare and detect any phononic state. The network can be extended to reveal quantum advantage and has high reconstruction fidelities for both single- and two-phonon states.
A network of bosons evolving among different modes while passing through beam splitters and phase shifters has been applied to demonstrate quantum computational advantage. While such networks have mostly been implemented in optical systems using photons, alternative realizations addressing major limitations in photonic systems such as photon loss have been explored recently. Quantized excitations of vibrational modes (phonons) of trapped ions are a promising candidate to realize such bosonic networks. Here, we demonstrate a minimal-loss programmable phononic network in which any phononic state can be deterministically prepared and detected. We realize networks with up to four collective vibrational modes, which can be extended to reveal quantum advantage. We benchmark the performance of the network for an exemplary tomography algorithm using arbitrary multi-mode states with fixed total phonon number. We obtain high reconstruction fidelities for both single- and two-phonon states. Our experiment demonstrates a clear pathway to scale up a phononic network for quantum information processing beyond the limitations of classical and photonic systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据