4.7 Article

Neural dynamics and architecture of the heading direction circuit in zebrafish

期刊

NATURE NEUROSCIENCE
卷 -, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41593-023-01308-5

关键词

-

向作者/读者索取更多资源

In this study, the researchers discovered a circuit in the hindbrain of larval zebrafish that persistently encodes heading direction. This neuronal network supports ring attractor dynamics through inhibitory connections between neurons. The findings show a topographical representation of heading direction in the zebrafish anterior hindbrain, with a sinusoidal bump of activity rotating as the fish swims in different directions. The electron microscopy reconstructions revealed that these neurons arborize in the interpeduncular nucleus and exhibit similar architectural principles to those found in the fly central complex, suggesting a common mechanism for representing heading direction across different animal species.
In this study, Petrucco, Lavian et al. identify a circuit in the hindbrain of larval zebrafish that persistently encodes heading direction. Neurons of this network, of stereotypical morphology, inhibit each other to support ring attractor dynamics. Animals generate neural representations of their heading direction. Notably, in insects, heading direction is topographically represented by the activity of neurons in the central complex. Although head direction cells have been found in vertebrates, the connectivity that endows them with their properties is unknown. Using volumetric lightsheet imaging, we find a topographical representation of heading direction in a neuronal network in the zebrafish anterior hindbrain, where a sinusoidal bump of activity rotates following directional swims of the fish and is otherwise stable over many seconds. Electron microscopy reconstructions show that, although the cell bodies are located in a dorsal region, these neurons arborize in the interpeduncular nucleus, where reciprocal inhibitory connectivity stabilizes the ring attractor network that encodes heading. These neurons resemble those found in the fly central complex, showing that similar circuit architecture principles may underlie the representation of heading direction across the animal kingdom and paving the way to an unprecedented mechanistic understanding of these networks in vertebrates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据