4.7 Article

Computational complexity drives sustained deliberation

期刊

NATURE NEUROSCIENCE
卷 -, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41593-023-01307-6

关键词

-

向作者/读者索取更多资源

This study investigates the decision-making process in nonhuman primates by observing their behavior in a combinatorial optimization task. The findings suggest that the animals employ different algorithms based on the complexity of the problem, and the deliberation time is correlated with the computational complexity. These results provide evidence for algorithm-based reasoning and establish a paradigm for studying sustained deliberation in the brain.
Economic deliberations are slow, effortful and intentional searches for solutions to difficult economic problems. Although such deliberations are critical for making sound decisions, the underlying reasoning strategies and neurobiological substrates remain poorly understood. Here two nonhuman primates performed a combinatorial optimization task to identify valuable subsets and satisfy predefined constraints. Their behavior revealed evidence of combinatorial reasoning-when low-complexity algorithms that consider items one at a time provided optimal solutions, the animals adopted low-complexity reasoning strategies. When greater computational resources were required, the animals approximated high-complexity algorithms that search for optimal combinations. The deliberation times reflected the demands created by computational complexity-high-complexity algorithms require more operations and, concomitantly, the animals deliberated for longer durations. Recurrent neural networks that mimicked low- and high-complexity algorithms also reflected the behavioral deliberation times and were used to reveal algorithm-specific computations that support economic deliberation. These findings reveal evidence for algorithm-based reasoning and establish a paradigm for studying the neurophysiological basis for sustained deliberation. The authors develop a reward optimization framework to study sustained deliberation in nonhuman primates. As the computational complexity increased, animals deliberated longer and applied more complex reasoning strategies to optimize rewards.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据