4.8 Article

Self-supervised machine learning pushes the sensitivity limit in label-free detection of single proteins below 10 kDa

期刊

NATURE METHODS
卷 20, 期 3, 页码 442-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41592-023-01778-2

关键词

-

向作者/读者索取更多资源

An unsupervised machine learning approach improves the mass sensitivity of iSCAT by a factor of 4 to below 10 kDa, enabling the detection of small traces of biomolecules and disease markers.
Interferometric scattering (iSCAT) microscopy is a label-free optical method capable of detecting single proteins, localizing their binding positions with nanometer precision, and measuring their mass. In the ideal case, iSCAT is limited by shot noise such that collection of more photons should extend its detection sensitivity to biomolecules of arbitrarily low mass. However, a number of technical noise sources combined with speckle-like background fluctuations have restricted the detection limit in iSCAT. Here, we show that an unsupervised machine learning isolation forest algorithm for anomaly detection pushes the mass sensitivity limit by a factor of 4 to below 10 kDa. We implement this scheme both with a user-defined feature matrix and a self-supervised FastDVDNet and validate our results with correlative fluorescence images recorded in total internal reflection mode. Our work opens the door to optical investigations of small traces of biomolecules and disease markers such as alpha-synuclein, chemokines and cytokines. An unsupervised machine learning approach for anomaly detection, implemented as both a user-defined feature matrix and a self-supervised deep neural network, improves the mass sensitivity of iSCAT by a factor of 4 to below 10 kDa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据