4.8 Article

Acetylation of histone H2B marks active enhancers and predicts CBP/p300 target genes

期刊

NATURE GENETICS
卷 55, 期 4, 页码 679-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41588-023-01348-4

关键词

-

向作者/读者索取更多资源

Chromatin features such as histone H2B N-terminus multisite lysine acetylation are used to identify active enhancers and predict their strength. These chromatin features can also discriminate active enhancers from other regulatory elements and determine their target genes. The intensity of H2BNTac can even predict enhancer strength more accurately than current models.
Chromatin features are widely used for genome-scale mapping of enhancers. However, discriminating active enhancers from other cis-regulatory elements, predicting enhancer strength and identifying their target genes is challenging. Here we establish histone H2B N-terminus multisite lysine acetylation (H2BNTac) as a signature of active enhancers. H2BNTac prominently marks candidate active enhancers and a subset of promoters and discriminates them from ubiquitously active promoters. Two mechanisms underlie the distinct H2BNTac specificity: (1) unlike H3K27ac, H2BNTac is specifically catalyzed by CBP/p300; (2) H2A-H2B, but not H3-H4, are rapidly exchanged through transcription-induced nucleosome remodeling. H2BNTac-positive candidate enhancers show a high validation rate in orthogonal enhancer activity assays and a vast majority of endogenously active enhancers are marked by H2BNTac and H3K27ac. Notably, H2BNTac intensity predicts enhancer strength and outperforms current state-of-the-art models in predicting CBP/p300 target genes. These findings have broad implications for generating fine-grained enhancer maps and modeling CBP/p300-dependent gene regulation. Histone H2B N-terminus multisite lysine acetylation (H2BNTac) is identified as a signature of active enhancers. H2BNTac-positive putative enhancers are validated using orthogonal enhancer activity assays.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据