4.8 Article

Polarized focal adhesion kinase activity within a focal adhesion during cell migration

期刊

NATURE CHEMICAL BIOLOGY
卷 -, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41589-023-01353-y

关键词

-

向作者/读者索取更多资源

Researchers have developed a genetically encoded FAK activity sensor called SPARK, which allows visualization of endogenous FAK activity in living cells and vertebrates. They have discovered polarized FAK activity at the distal tip of newly formed single focal adhesions (FAs) in migrating cells, and found that FAK activity is proportional to the strength of tension applied to FAs. These findings advance our understanding of the mechanistic processes involved in cell migration.
Focal adhesion kinase (FAK) relays integrin signaling from outside to inside cells and contributes to cell adhesion and motility. However, the spatiotemporal dynamics of FAK activity in single FAs is unclear due to the lack of a robust FAK reporter, which limits our understanding of these essential biological processes. Here we have engineered a genetically encoded FAK activity sensor, dubbed FAK-separation of phases-based activity reporter of kinase (SPARK), which visualizes endogenous FAK activity in living cells and vertebrates. Our work reveals temporal dynamics of FAK activity during FA turnover. Most importantly, our study unveils polarized FAK activity at the distal tip of newly formed single FAs in the leading edge of a migrating cell. By combining FAK-SPARK with DNA tension probes, we show that tensions applied to FAs precede FAK activation and that FAK activity is proportional to the strength of tension. These results suggest tension-induced polarized FAK activity in single FAs, advancing the mechanistic understanding of cell migration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据