4.6 Article

Deep reactive ion etching of cylindrical nanopores in silicon for photonic crystals

期刊

NANOTECHNOLOGY
卷 34, 期 22, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-6528/acc034

关键词

reactive ion etching; photonic crystals; silicon nanophotonics

向作者/读者索取更多资源

Periodic arrays of deep nanopores in silicon are important for silicon nanophotonics. Previous studies focused on achieving deep nanopores with high aspect ratios, but resulted in structural imperfections. This study aims to realize cylindrical nanopores for better comparison with theory and simulations. By optimizing etching parameters and implementing a multistep process, cylindrical nanopores with high aspect ratios were achieved, suitable for silicon nanophotonic structures.
Periodic arrays of deep nanopores etched in silicon by deep reactive ion etching are desirable structures for photonic crystals and other nanostructures for silicon nanophotonics. Previous studies focused on realizing as deep as possible nanopores with as high as possible aspect ratios. The resulting nanopores suffered from structural imperfections of the nanopores, such as mask undercut, uneven and large scallops, depth dependent pore radii and tapering. Therefore, our present focus is to realize nanopores that have as cylindrical as possible shapes, in order to obtain a better comparison of nanophotonic observations with theory and simulations. To this end in our 2-step Bosch process we have improved the mask undercut, the uneven scallops, pore widening and positive tapering by optimizing a plethora of parameters such as the etch step time, capacitively coupled plasma (ion energy) and pressure. To add further degrees of control, we implemented a 3-step DREM (deposit, remove, etch, multistep) process. Optimization of the etching process results in cylindrical nanopores with a diameter in the range between 280 and 500 nm and a depth around 7 mu m, corresponding to high depth-to-diameter aspect ratios between 14 and 25, that are very well suited for the realization of silicon nanophotonic structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据