4.8 Article

NIR light-driven photocatalytic NAD(P)H oxidation and H2O2 generation in situ for enhanced chemodynamic therapy and immune response

期刊

NANO TODAY
卷 50, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.nantod.2023.101824

关键词

Chemodynamic therapy; Photocatalytic NAD(P)H oxidation; Immunotherapy; Upconversion nanoparticle

向作者/读者索取更多资源

Chemodynamic therapy (CDT) is a promising cancer treatment that uses H2O2 to kill cancer cells. However, limited H2O2 in tumor cells limits its clinical application. In this study, a supramolecule (Ru1) was synthesized to efficiently generate H2O2. When loaded onto nanoparticles and exposed to near-infrared light, the intracellular H2O2 level increased by 2.8 times. This enhanced CDT and also stimulated immune response by reprogramming the tumor microenvironment.
Chemodynamic therapy (CDT) is an appealing cancer treatment that converts endogenous H2O2 into highly toxic hydroxyl radicals to kill cancer cells. However, the limited amount of H2O2 in tumor cells constrains the application of CDT. Therefore, the strategy that can increase H2O2 level in situ could broaden its clinical application. Herein, we synthesized a supramolecule [Ru(bpy)2(Nabpy)](PF6)2 (Ru1) which can efficiently photo-catalyze NAD(P)H oxidation with simultaneous generation of H2O2 with a high yield at 76.4 %. The Ru1 and Fe2+ were then loaded on the mesoporous silica-encapsulated rare earth-doped upconversion nanoparticles (UCSRF), the intracellular H2O2 level can be elevated by 2.8 times upon the irradiation of near-infrared (NIR) light irradiation. Then, the intracellular H2O2 was transformed into hydroxyl radicals through Fenton reaction to achieve efficient CDT both in vitro and in vivo. Furthermore, we demonstrated that UCSRF could effectively enhance immunogenic cell death (ICD) effect, resulting in the reprogramming of the immunosuppressive tumor microenvironment to stimulate immune response. This work represents the first proof-of-concept study on photo-catalytically enhancing H2O2 production in situ upon NIR irradiation for spatiotemporal CDT.(c) 2023 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据