4.8 Article

Peroxidase-like single Fe atoms anchored on Ti3C2Tx MXene as surface enhanced Raman scattering substrate for the simultaneous discrimination of multiple antioxidants

期刊

NANO RESEARCH
卷 -, 期 -, 页码 -

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-023-5739-2

关键词

single atom catalyst; Ti3C2Tx MXene; atomic interface site; surface enhanced Raman scattering (SERS); antioxidants

向作者/读者索取更多资源

Fe single atoms supported on Ti3C2Tx have been developed as peroxidase-like nanozymes for sensing five antioxidants. The Fe single atoms exhibit excellent catalytic performance and electron transfer occurs along Fe-O-Ti ligands. This system enables high identifiable catalytic property and wide detection concentration ranges for antioxidants.
Single-atom nanozymes (SAzymes) are emerging as promising alternatives to mimic natural enzyme, which is due to high atomic utilization efficiency, well-defined geometric, and unique electronic structure. Herein, Fe single atoms supported on Ti3C2Tx (Fe-SA/Ti3C2Tx) with intrinsic peroxidase activity is developed, further constructing a sensitive Raman sensor array for sensing of five antioxidants. Fe-SA/Ti3C2Tx shows excellent peroxidase-like performance in catalyzing the oxidation of 3,3 ',5,5 '-tetramethylbenzidine (TMB) with colorimetric reactions. X-ray adsorption fine structure (XAFS) reveals that the electron transport between the Ti3C2Tx and Fe atoms occurs along Fe-O-Ti ligands, meanwhile the density functional theory (DFT) calculations confirm the spontaneous dissociation of H2O2 and the formation of OH radicals. Furthermore, the peroxidase-like Fe-SA/Ti3C2Tx was used as surface enhanced Raman scattering (SERS) substrate of oxidized TMB (TMB+) and achieved satisfied signal amplification performance. Using the blocking effects of free radical reactions, one-off identification of 5 antioxidants, including ascorbic acid (AA), uric acid (UA), glutathione (GSH), melatonin (Mel), and tea polyphenols (TPP), could be realized with this high identifiable catalytic property. This principle could realize 100% distinguish accuracy combined with linear discriminant analysis (LDA) and heat map data analysis. A wide detection concentration ranges from 10(-8) to 10(-3) M for five antioxidants was also achieved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据