4.8 Article

Ultrastable nickel single-atom catalysts with high activity and selectivity for electrocatalytic CO2 methanation

期刊

NANO RESEARCH
卷 -, 期 -, 页码 -

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-023-5640-z

关键词

single atom catalyst; density functional theory; CO2 reduction; metal-organic framework; electrocatalysis

向作者/读者索取更多资源

In this study, a non-noble metal catalyst, nickel single-atom catalyst (SAC) of Ni-1/UiO-66-NH2, was reported for the electrochemical reduction of CO2 to CH4. The catalyst exhibited high stability and selectivity, with CH4 being the predominant product. Theoretical calculations showed that the Ni-1/UiO-66-NH2 catalyst had a low limiting potential and suppressed the competitive hydrogen evolution reaction. This work provides a theoretical foundation for the further development and application of SAC electrocatalysts in CO2 reduction.
Electrochemical conversion of CO2 into valuable hydrocarbon fuel is one of the key steps in solving carbon emission and energy issue. Herein, we report a non-noble metal catalyst, nickel single-atom catalyst (SAC) of Ni-1/UiO-66-NH2, with high stability and selectivity for electrochemical reduction of CO2 to CH4. Based on ab initio molecular dynamics (AIMD) simulations, the CO2 molecule is at first reduced into CO2- when stably adsorbed on a Ni single atom with the bidentate coordination mode. To evaluate its activity and selectivity for electrocatalytic reduction of CO2 to different products (HCOOH, CO, CH3OH, and CH4) on Ni-1/UiO-66-NH2, we have used density functional theory (DFT) to study different reaction pathways. The results show that CH4 is generated preferentially on Ni-1/UiO-66-NH2 and the calculated limiting potential is as low as -0.24 V. Moreover, the competitive hydrogen evolution reaction is unfavorable at the activation site of Ni-1/UiO-66-NH2 owing to the higher limiting potential of -0.56 V. Furthermore, the change of Ni single atom valence state plays an important role in promoting CO2 reduction to CH4. This work provides a theoretical foundation for further experimental studies and practical applications of metal-organic framework (UiO-66)based SAC electrocatalysts with high activity and selectivity for the CO2 reduction reaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据