4.8 Article

High-Speed Atomic Force Microscopy Reveals Spontaneous Nucleosome Sliding of H2A.Z at the Subsecond Time Scale

期刊

NANO LETTERS
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.2c04346

关键词

high-speed atomic force microscopy; nucleosome; nucleosome dynamics; single-molecule imaging; H2A histone variant

向作者/读者索取更多资源

This study used high-speed atomic force microscopy to directly observe the subsecond dynamics of human H2A.Z.1-nucleosomes. The results showed that the nucleosomes can slide along 4 nm of DNA within 0.3 s in any direction. The interaction between the N-terminal region of H2A.Z.1 and the DNA was found to be responsible for nucleosome sliding.
Nucleosome dynamics, such as nucleosome sliding and DNA unwrapping, are important for gene regulation in eukaryotic chromatin. H2A.Z, a variant of histone H2A that is highly evolutionarily conserved, participates in gene regulation by forming unstable multipositioned nucleosomes in vivo and in vitro. However, the subsecond dynamics of this unstable nucleosome have not been directly visualized under physiological conditions. Here, we used high-speed atomic force microscopy (HS-AFM) to directly visualize the subsecond dynamics of human H2A.Z.1-nucleosomes. HS-AFM videos show nucleosome sliding along 4 nm of DNA within 0.3 s in any direction. This sliding was also visualized in an H2A.Z.1 mutant, in which the C-terminal half was replaced by the corresponding canonical H2A amino acids, indicating that the interaction between the N-terminal region of H2A.Z.1 and the DNA is responsible for nucleosome sliding. These results may reveal the relationship between nucleosome dynamics and gene regulation by histone H2A.Z.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据