4.8 Article

Intrinsic Interface Adsorption Drives Selectivity in Atomically Smooth Nanofluidic Channels

期刊

NANO LETTERS
卷 23, 期 10, 页码 4226-4233

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.3c00207

关键词

nanofluidics; desalination; membranes; interfaces; hydrodynamics

向作者/读者索取更多资源

This research demonstrates the use of molecular dynamics simulations and linear response theory to comprehensively characterize nanofluidic transport. The study reveals the specific molecular interactions that underlie unique phenomena and advantages in nanofluidic systems, including the emergence of electrical current and salt selectivity. The results suggest that nanochannels can function as desalination membranes.
Specific molecular interactions underlie unexpected and useful phenomena in nanofluidic systems, but these require descriptions that go beyond traditional macroscopic hydrodynamics. In this letter, we demonstrate how equilibrium molecular dynamics simulations and linear response theory can be synthesized with hydrodynamics to provide a comprehensive characterization of nanofluidic transport. Specifically, we study the pressure driven flows of ionic solutions in nanochannels comprised of two-dimensional crystalline substrates made from graphite and hexagonal boron nitride. While simple hydrodynamic descriptions do not predict a streaming electrical current or salt selectivity in such simple systems, we observe that both arise due to the intrinsic molecular interactions that act to selectively adsorb ions to the interface in the absence of a net surface charge. Notably, this emergent selectivity indicates that these nanochannels can serve as desalination membranes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据