4.8 Article

Nematically Templated Vortex Lattices in Superconducting FeSe

期刊

NANO LETTERS
卷 23, 期 7, 页码 2822-2830

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.3c00125

关键词

FeSe; vortex; twin boundary; scanning tunneling microscope; templated vortex lattice; Langevin dynamics simulation

向作者/读者索取更多资源

New pathways are needed to control the morphology and dynamics of superconducting vortex lattices in order to transform them into a computing platform. It has been discovered that nematic twin boundaries can align superconducting vortices in adjacent terraces. Different structural phases of the vortex lattice can be assumed by varying the density and morphology of the twin boundaries. These findings have implications for the design and control of strain-based topological quantum computing architectures.
New pathways to controlling the morphology of superconducting vortex lattices-and their subsequent dynamics-are required to guide and scale vortex world-lines into a computing platform. We have found that the nematic twin boundaries align superconducting vortices in the adjacent terraces due to the incommensurate potential between vortices surrounding twin bounda-ries and those trapped within them. With the varying density and morphology of twin boundaries, the vortex lattice assumes several distinct structural phases, including square, regular, and irregular one-dimensional lattices. Through concomitant analysis of vortex lattice models, we have inferred the characteristic energetics of the twin boundary potential and furthermore predicted the existence of geometric size effects as a function of increasing confinement by the twin boundaries. These findings extend the ideas of directed control over vortex lattices to intrinsic topological defects and their self-organized networks, which have direct implications for the future design and control of strain-based topological quantum computing architectures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据