4.7 Article

Sublimation of ices during the early evolution of Kuiper belt objects

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stad1086

关键词

comets: general; Kuiper belt: general; Kuiper belt objects: individual: Arrokoth

向作者/读者索取更多资源

The most volatile ices (CO and CH4) are depleted over a timescale of about 100 million years, while other ices can be preserved. This is consistent with data collected by New Horizons on Arrokoth, showing the presence of methanol, and possibly, H2O, CO2, NH3, and C2H6, but no hypervolatiles. The effect of short-lived radionuclides is to increase the sublimation equilibrium temperatures and reduce volatile depletion times.
Kuiper belt objects, such as Arrokoth, the probable progenitors of short-period comets, formed and evolved at large heliocentric distances, where the ambient temperatures appear to be sufficiently low for preserving volatile ices. By detailed numerical simulations, we follow the long-term evolution of small bodies, composed of amorphous water ice, dust, and ices of other volatile species that are commonly observed in comets. The heat sources are solar radiation and the decay of short-lived radionuclides. The bodies are highly porous and gases released in the interior flow through the porous medium. The most volatile ices, CO and CH4, are found to be depleted down to the centre over a time-scale of the order of 100 Myr. Sublimation fronts advance from the surface inward, and when the temperature in the inner part rises sufficiently, bulk sublimation throughout the interior reduces gradually the volatile ices content until they are completely lost. All the other ices survive, which is compatible with data collected by New Horizons on Arrokoth, showing the presence of methanol, and possibly, H2O, CO2, NH3, and C2H6, but no hypervolatiles. The effect of short-lived radionuclides is to increase the sublimation equilibrium temperatures and reduce volatile depletion times. We consider the effect of the bulk density, abundance ratios, and heliocentric distance. At 100 au, CO is depleted, but CH4 survives to present times, except for a thin outer layer. Since, CO is abundantly detected in comets, we conclude that the source of highly volatile species in active comets must be gas trapped in amorphous ice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据