4.7 Article

Studying the warm hot intergalactic medium in emission: a reprise

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stad1495

关键词

methods: numerical; galaxies: evolution; intergalactic medium; large-scale structure of Universe; cosmology: theory

向作者/读者索取更多资源

In this study, we use simulations to model the surface brightness maps of OVII and OVIII ion lines and compute summary statistics to infer the properties of the warm-hot intergalactic medium (WHIM). Our findings confirm that detectable WHIM emission is primarily associated with galaxy haloes, and the WHIM properties show minimal evolution over time. By exploring different parameters, we investigate the sensitivity of WHIM properties to cosmology and energy feedback mechanisms. Additionally, we provide forecasts for WHIM observations using a spectrometer similar to X-IFU, anticipating the detection of multiple emission lines per pixel. Overall, our work demonstrates the potential of emission studies to probe the densest phase of the WHIM and shed light on its physical properties.
The warm-hot intergalactic medium (WHIM) contains a significant portion of the 'missing baryons'. Its detection in emission remains a challenge. Integral field spectrometers like X-IFU on board of the Athena satellite will secure WHIM detection in absorption and emission and, for the first time, allow us to investigate its physical properties. In our research, we use the CAMELS simulations to model the surface brightness maps of the OVII and OVIII ion lines and compute summary statistics like photon counts and 2-point correlation functions to infer the properties of the WHIM. Our findings confirm that detectable WHIM emission is primarily associated with galaxy haloes, and the properties of the WHIM show minimal evolution from z similar to 0.5 to the present time. By exploring a wide range of parameters within the CAMELS suite, we investigate the sensitivity of WHIM properties to cosmology and energy feedback mechanisms influenced by active galactic nuclei and stellar activity. This approach allows us to separate the cosmological aspects from the baryonic processes and place constraints on the latter. Additionally, we provide forecasts for WHIM observations using a spectrometer similar to X-IFU. We anticipate detecting 1-3 WHIM emission lines per pixel and mapping the WHIM emission profile around haloes up to a few tens of arcminutes, surpassing the typical size of a WHIM emitter. Overall, our work demonstrates the potential of emission studies to probe the densest phase of the WHIM, shedding light on its physical properties and offering insights into the cosmological and baryonic processes at play.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据