4.7 Article

Iceline variations driven by protoplanetary disc gaps

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stad1159

关键词

radiative transfer; planets and satellites: composition; protoplanetary discs

向作者/读者索取更多资源

The composition of forming planets is determined by the thermal structure of the protoplanetary disc, which is influenced by dust radiative transfer, accretional heating, and the occurrence of gaps. This study uses a radiative transfer code to model the thermal structure of 2D dust with gaps corresponding to different planetary masses and orbital radii. The results show that gaps can significantly affect the temperature distribution within the disc, leading to variations in dust-gas segregation and the position of icelines.
The composition of forming planets is strongly affected by the protoplanetary disc's thermal structure. This thermal structure is predominantly set by dust radiative transfer and viscous (accretional) heating and can be impacted by gaps - regions of low dust and gas density that can occur when planets form. The effect of variations in dust surface density on disc temperature has been poorly understood to date. In this work, we use the radiative transfer code MCMax to model the 2D dust thermal structure with individual gaps corresponding to planets with masses of 0.1 M-J -5 M-J and orbital radii of 3, 5, and 10 au. Low dust opacity in the gap allows radiation to penetrate deeper and warm the mid-plane by up to 16 K, but only for gaps located in the region of the disc where stellar irradiation is the dominant source of heating. In viscously heated regions, the mid-plane of the gap is relatively cooler by up to 100 K. Outside of the gap, broad radial oscillations in heating and cooling are present due to disc flaring. These thermal features affect local dust-gas segregation of volatile elements (H2O, CH4, CO2, and CO). We find that icelines experience dramatic shifts relative to gapless models: up to 6.5 au (or 71 per cent) closer to the star and 4.3 au (or 100 per cent) closer to the mid-plane. While quantitative predictions of iceline deviations will require more sophisticated models, which include transport, sublimation/condensation kinetics, and gas-dust thermal decoupling in the disc atmosphere, our results suggest that planet-induced iceline variations represent a potential feedback from the planet on to the composition of material it is accreting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据