4.7 Article

Massive core/star formation triggered by cloud-cloud collision - II. High-speed collisions of magnetized clouds

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stad1089

关键词

MHD - stars; formation - stars; massive - ISM; clouds - ISM; magnetic fields

向作者/读者索取更多资源

In this study, the effects of magnetic fields on the formation of massive, self-gravitationally bound cores (MBCs) in high-speed cloud-cloud collisions (CCCs) are investigated through magnetohydrodynamic simulations. The results show that magnetic fields hinder the growth of cores, especially in short-duration collisions. This two-fold effect of magnetic fields on the MBC formation in CCCs results in a maximum collision speed for the formation of massive stars.
We present a study of the effects of magnetic fields on the formation of massive, self-gravitationally bound cores (MBCs) in high-speed cloud-cloud collisions (CCCs). Extending our previous work, we perform magnetohydrodynamic simulations of the high-speed (20-40 km s(-1)) collisions between two magnetized (initial 4 mu G), turbulent clouds of different sizes in the range of 7-20 pc. We show that a magnetic field hinders the growth of cores, particularly in the case of short-duration collisions where cores are not seen to reach a highly bound state. In such cases, a shocked region created by the collision rapidly expands into the ambient medium owing to the enhanced magnetic pressure, resulting in the destruction of the highly unbound cores and suppression of gas accretion. This ne gativ e effect on the formation of MBCs has not been reported in previous hydrodynamic simulations of CCCs. Together with our previous work, we conclude that magnetic fields provide two competing effects on the MBC formation in CCCs; while they promote the mass accumulation onto cores during a collision, they operate to destroy cores or hinder the core growth after the collision. The duration of such collisions determines which effect prevails, resulting in a maximum collision speed for the MBC formation within given colliding clouds. Our results agree with the observed trend among CCC samples in the column density range probed in the simulations presented here; CCCs with higher relative velocities require higher column densities for the formation of massive stars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据