4.6 Review

Electroactive Microorganisms in Advanced Energy Technologies

期刊

MOLECULES
卷 28, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/molecules28114372

关键词

microorganisms; electrocatalysis systems; microbial sensors; microbial power generation

向作者/读者索取更多资源

Large-scale production of green and pollution-free materials is crucial for deploying sustainable clean energy. Currently, the fabrication of traditional energy materials involves complex technological conditions and high costs, which significantly limits their broad application in the industry. Microorganisms involved in energy production have the advantages of inexpensive production and safe process and can minimize the problem of chemical reagents in environmental pollution. This paper reviews the mechanisms of electron transport, redox, metabolism, structure, and composition of electroactive microorganisms in synthesizing energy materials. It then discusses and summarizes the applications of microbial energy materials in electrocatalytic systems, sensors, and power generation devices. Lastly, the research progress and existing challenges for electroactive microorganisms in the energy and environment sectors described herein provide a theoretical basis for exploring the future application of electroactive microorganisms in energy materials.
Large-scale production of green and pollution-free materials is crucial for deploying sustainable clean energy. Currently, the fabrication of traditional energy materials involves complex technological conditions and high costs, which significantly limits their broad application in the industry. Microorganisms involved in energy production have the advantages of inexpensive production and safe process and can minimize the problem of chemical reagents in environmental pollution. This paper reviews the mechanisms of electron transport, redox, metabolism, structure, and composition of electroactive microorganisms in synthesizing energy materials. It then discusses and summarizes the applications of microbial energy materials in electrocatalytic systems, sensors, and power generation devices. Lastly, the research progress and existing challenges for electroactive microorganisms in the energy and environment sectors described herein provide a theoretical basis for exploring the future application of electroactive microorganisms in energy materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据