4.8 Article

Structured tracking of alcohol reinforcement (STAR) for basic and translational alcohol research

期刊

MOLECULAR PSYCHIATRY
卷 28, 期 4, 页码 1585-1598

出版社

SPRINGERNATURE
DOI: 10.1038/s41380-023-01994-4

关键词

-

向作者/读者索取更多资源

There is tension between methodologies in model species research and preclinical to clinical translation in alcohol research. To address this, researchers establish a modular alcohol reinforcement paradigm and combine it with existing preclinical alcohol models to determine longitudinal phenotype dynamics and potential neuro-biomarkers of alcohol vulnerability.
There is inherent tension between methodologies developed to address basic research questions in model species and those intended for preclinical to clinical translation: basic investigations require flexibility of experimental design as hypotheses are rapidly tested and revised, whereas preclinical models emphasize standardized protocols and specific outcome measures. This dichotomy is particularly relevant in alcohol research, which spans a diverse range of basic sciences in addition to intensive efforts towards understanding the pathophysiology of alcohol use disorder (AUD). To advance these goals there is a great need for approaches that facilitate synergy across basic and translational areas of nonhuman alcohol research. In male and female mice, we establish a modular alcohol reinforcement paradigm: Structured Tracking of Alcohol Reinforcement (STAR). STAR provides a robust platform for quantitative assessment of AUD-relevant behavioral domains within a flexible framework that allows direct crosstalk between translational and mechanistically oriented studies. To achieve cross-study integration, despite disparate task parameters, a straightforward multivariate phenotyping analysis is used to classify subjects based on propensity for heightened alcohol consumption and insensitivity to punishment. Combining STAR with extant preclinical alcohol models, we delineate longitudinal phenotype dynamics and reveal putative neuro-biomarkers of heightened alcohol use vulnerability via neurochemical profiling of cortical and brainstem tissues. Together, STAR allows quantification of time-resolved biobehavioral processes essential for basic research questions simultaneous with longitudinal phenotyping of clinically relevant outcomes, thereby providing a framework to facilitate cohesion and translation in alcohol research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据