4.7 Article

PPM1D activity promotes the replication stress caused by cyclin E1 overexpression

期刊

MOLECULAR ONCOLOGY
卷 18, 期 1, 页码 6-20

出版社

WILEY
DOI: 10.1002/1878-0261.13433

关键词

cancer; cell cycle; cyclin E1; PPM1D phosphatase; replication stress

类别

向作者/读者索取更多资源

Oncogene-induced replication stress is a major cause of genome instability in cancer cells. This study reveals that increased activity of PPM1D exacerbates replication stress caused by cyclin E1 overexpression, leading to abnormal cell cycle progression and accumulation of DNA copy number alterations. Pharmacological inhibition of PPM1D can alleviate replication stress-induced genome instability.
Oncogene-induced replication stress has been recognized as a major cause of genome instability in cancer cells. Increased expression of cyclin E1 caused by amplification of the CCNE1 gene is a common cause of replication stress in various cancers. Protein phosphatase magnesium-dependent 1 delta (PPM1D) is a negative regulator of p53 and has been implicated in termination of the cell cycle checkpoint. Amplification of the PPM1D gene or frameshift mutations in its final exon promote tumorigenesis. Here, we show that PPM1D activity further increases the replication stress caused by overexpression of cyclin E1. In particular, we demonstrate that cells expressing a truncated mutant of PPM1D progress faster from G1 to S phase and fail to complete licensing of the replication origins. In addition, we show that transcription-replication collisions and replication fork slowing caused by CCNE1 overexpression are exaggerated in cells expressing the truncated PPM1D. Finally, replication speed and accumulation of focal DNA copy number alterations caused by induction of CCNE1 expression was rescued by pharmacological inhibition of PPM1D. We propose that increased activity of PPM1D suppresses the checkpoint function of p53 and thus promotes genome instability in cells expressing the CCNE1 oncogene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据