4.7 Article

The transcriptional state and chromatin landscape of cichlid jaw shape variation across species and environments

期刊

MOLECULAR ECOLOGY
卷 32, 期 14, 页码 3922-3941

出版社

WILEY
DOI: 10.1111/mec.16975

关键词

ATAC-seq; bone; cichlid; feeding morphology; phenotypic plasticity; RNA-seq

向作者/读者索取更多资源

Adaptive phenotypes are influenced by genetic and environmental factors, but the interplay between them is not well understood. This study uses the oral jaw apparatus of cichlid fish to investigate the gene-by-environment effects. Gene expression analysis revealed differences between species and environments, with more pronounced species differences in response to different foraging modes. The findings suggest a role of genetic assimilation and implicate specific genes in shaping the jaw across species and environments.
Adaptive phenotypes are shaped by a combination of genetic and environmental forces, but how they interact remains poorly understood. Here, we utilize the cichlid oral jaw apparatus to better understand these gene-by-environment effects. First, we employed RNA-seq in bony and ligamentous tissues important for jaw opening to identify differentially expressed genes between species and across foraging environments. We used two Lake Malawi species adapted to different foraging habitats along the pelagic-benthic ecomorphological axis. Our foraging treatments were designed to force animals to employ either suction or biting/scraping, which broadly mimic pelagic or benthic modes of feeding. We found a large number of differentially expressed genes between species, and while we identified relatively few differences between environments, species differences were far more pronounced when they were challenged with a pelagic versus benthic foraging mode. Expression data carried the signature of genetic assimilation, and implicated cell cycle regulation in shaping the jaw across species and environments. Next, we repeated the foraging experiment and performed ATAC-seq procedures on nuclei harvested from the same tissues. Cross-referencing results from both analyses revealed subsets of genes that were both differentially expressed and differentially accessible. This reduced dataset implicated notable candidate genes including the Hedgehog effector, KIAA0586 and the ETS transcription factor, etv4, which connects environmental stress and craniofacial morphogenesis. Taken together, these data provide novel insights into the epigenetic, genetic and cellular bases of species- and environment-specific bone shapes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据