4.8 Article

An Assessment of Quaternary Structure Functionality in Homomer Protein Complexes

期刊

MOLECULAR BIOLOGY AND EVOLUTION
卷 40, 期 4, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msad070

关键词

protein complexes; homomers; neutral evolution; ligand binding; coevolution

向作者/读者索取更多资源

It has been suggested that a significant fraction of homomer protein-protein interfaces evolve neutrally, without contributing to function, due to a hydrophobic bias in missense mutations. However, the fraction of such gratuitous complexes is currently unknown. In this study, the researchers quantified the fraction of homodimers where multimerization is unlikely to contribute to their biochemical function. They found that ligand binding-site structure predicts whether a homomer is functional or not, and that the hydrophobicity of interfaces changes little with the strength of selection. Additionally, they observed that MBS homomer interfaces coevolve more strongly with ligand binding sites than the interfaces of SBS homomers.
It has been recently suggested that a significant fraction of homomer protein-protein interfaces evolve neutrally, without contributing to function, due to a hydrophobic bias in missense mutations. However, the fraction of such gratuitous complexes is currently unknown. Here, we quantified the fraction of homodimers where multimerization is unlikely to contribute to their biochemical function. We show that: 1) ligand binding-site structure predicts whether a homomer is functional or not; the vast majority of homodimers with multichain binding-sites (MBS) are likely to be functional, while in homodimers with single-chain binding-sites (SBS) and small to medium interfaces, quaternary structure is unlikely to be functional in a significant fraction-35%, even up to 42%-of complexes; 2) the hydrophobicity of interfaces changes little with the strength of selection, and the amino acid composition of interfaces is shaped by the hydrophobic ratchet in both types, but they are not in a strict equilibrium with mutations; particularly cysteines are much more abundant in mutations than in interfaces or surfaces; 3) in MBS homomers, the interfaces are conserved, while in a high fraction of SBS homomers, the interface is not more conserved than the solvent-accessible surface; and 4) MBS homomer interfaces coevolve more strongly with ligand binding sites than the interfaces of SBS homomers, and MBS complexes have higher capacity to transfer information from ligands across the interfaces than SBS homomers, explaining the enrichment of allostery in the former.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据