4.5 Article

Comprehensive analysis of m6A modification lncRNAs in high glucose and TNF-α induced human umbilical vein endothelial cells

期刊

MEDICINE
卷 102, 期 10, 页码 -

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/MD.0000000000033133

关键词

diabetes; high glucose; HUVECs; lncRNA; N6-methyladenosine; TNF-alpha

向作者/读者索取更多资源

This study found that high glucose and TNF-α induced endothelial cell dysfunction altered the m6A modification of multiple lncRNAs. A competing endogenous RNA network was established to reveal the regulatory relationship between lncRNAs, miRNAs and mRNAs, providing potential targets for the treatment and prevention of diabetic endothelial cell dysfunction.
N6-methyladenosine (m6A) RNA methylation, as a reversible epigenetic modification of mammalian mRNA, holds a critical role in multiple biological processes. m6A modification in Long non-coding RNAs (lncRNAs) has increasingly attracted more attention in recent years, especially in diabetics, with or without metabolic syndrome. We investigated via m6A-sequencing and RNA-sequencing the differentially expressed m6A modification lncRNAs by high glucose and TNF-alpha induced endothelial cell dysfunction in human umbilical vein endothelial cells. Additionally, gene ontology and kyoto encyclopedia of genes and genomes analyses were performed to analyze the biological functions and pathways for the target of mRNAs. Lastly, a competing endogenous RNA network was established to further reveal a regulatory relationship between lncRNAs, miRNAs and mRNAs. A total of 754 differentially m6A-methylated lncRNAs were identified, including 168 up-regulated lncRNAs and 266 down-regulated lncRNAs. Then, 119 significantly different lncRNAs were screened out, of which 60 hypermethylated lncRNAs and 59 hypomethylated lncRNAs. Moreover, 122 differentially expressed lncRNAs were filtered, containing 14 up-regulated mRNAs and 18 down-regulated lncRNAs. Gene ontology and kyoto encyclopedia of genes and genomes analyses analyses revealed these targets were mainly associated with metabolic process, HIF-1 signaling pathway, and other biological processes. The competing endogenous RNA network revealed the regulatory relationship between lncRNAs, miRNAs and mRNAs, providing potential targets for the treatment and prevention of diabetic endothelial cell dysfunction. This comprehensive analysis for lncRNAs m6A modification in high glucose and TNF-alpha-induced human umbilical vein endothelial cells not only demonstrated the understanding of characteristics of endothelial cell dysfunction, but also provided the new targets for the clinical treatment of diabetes. Private information from individuals will not be published. This systematic review also does not involve endangering participant rights. Ethical approval will not be required. The results may be published in a peer-reviewed journal or disseminated at relevant conferences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据