4.6 Article

Experimental and Monte Carlo-based determination of magnetic field correction factors kB,Q$k_{B,Q}$ in high-energy photon fields for two ionization chambers

期刊

MEDICAL PHYSICS
卷 50, 期 7, 页码 4578-4589

出版社

WILEY
DOI: 10.1002/mp.16345

关键词

Dosimetry; magnetic fields; magnetic field correction factors; Monte Carlo; MR-linac

向作者/读者索取更多资源

This study aimed to determine the correction factors kB,Q for ion chambers in the presence of external magnetic fields in high-energy photon fields. The results showed that the magnitude of the correction factor depends on the chamber volume and orientation, and the preferred chamber orientation is when the magnetic field direction and the chamber axis coincide and are perpendicular to the beam direction. The correction factors can be applied in clinical reference dosimetry for existing MRI-linear accelerators.
BackgroundThe integration of magnetic resonance tomography into clinical linear accelerators provides high-contrast, real-time imaging during treatment and facilitates online-adaptive workflows in radiation therapy treatments. The associated magnetic field also bends the trajectories of charged particles via the Lorentz force, which may alter the dose distribution in a patient or a phantom and affects the dose response of dosimetry detectors. PurposeTo perform an experimental and Monte Carlo-based determination of correction factors kB,Q$k_{B,Q}$, which correct the response of ion chambers in the presence of external magnetic fields in high-energy photon fields. MethodsThe response variation of two different types of ion chambers (Sun Nuclear SNC125c and SNC600c) in strong external magnetic fields was investigated experimentally and by Monte Carlo simulations. The experimental data were acquired at the German National Metrology Institute, PTB, using a clinical linear accelerator with a nominal photon energy of 6 MV and an external electromagnet capable of generating magnetic flux densities of up to 1.5 T in opposite directions. The Monte Carlo simulation geometries corresponded to the experimental setup and additionally to the reference conditions of IAEA TRS-398. For the latter, the Monte Carlo simulations were performed with two different photon spectra: the 6 MV spectrum of the linear accelerator used for the experimental data acquisition and a 7 MV spectrum of a commercial MRI-linear accelerator. In each simulation geometry, three different orientations of the external magnetic field, the beam direction and the chamber orientation were investigated. ResultsGood agreement was achieved between Monte Carlo simulations and measurements with the SNC125c and SNC600c ionization chambers, with a mean deviation of 0.3% and 0.6%, respectively. The magnitude of the correction factor kB,Q$k_{B,Q}$ strongly depends on the chamber volume and on the orientation of the chamber axis relative to the external magnetic field and the beam directions. It is greater for the SNC600c chamber with a volume of 0.6 cm(3) than for the SNC125c chamber with a volume of 0.1 cm(3). When the magnetic field direction and the chamber axis coincide, and they are perpendicular to the beam direction, the ion chambers exhibit a calculated overresponse of less than 0.7(6)% (SNC600c) and 0.3(4)% (SNC125c) at 1.5 T and less than 0.3(0)% (SNC600c) and 0.1(3)% (SNC125c) for 0.35 T for nominal beam energies of 6 MV and 7 MV. This chamber orientation should be preferred, as kB,Q$k_{B,Q}$ may increase significantly in other chamber orientations. Due to the special geometry of the guard ring, no dead-volume effects have been observed in any orientation studied. The results show an intra-type variation of 0.17% and 0.07% standard uncertainty (k=1) for the SNC125c and SNC600c, respectively. ConclusionMagnetic field correction factors kB,Q$k_{B,Q}$ for two different ion chambers and for typical clinical photon beam qualities were presented and compared with the few data existing in the literature. The correction factors may be applied in clinical reference dosimetry for existing MRI-linear accelerators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据