4.5 Article

Particle size distribution measurements of widely distributed carbonyl iron powder particles in concentrated suspensions using ultrasonic attenuation

期刊

MEASUREMENT SCIENCE AND TECHNOLOGY
卷 34, 期 7, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-6501/acc8f0

关键词

widely distributed particles; concentrated suspensions; particle size; ultrasonic attenuation; zeta potential

向作者/读者索取更多资源

The particle size distribution (PSD) and zeta potential of carbonyl iron powder (CIP) particles in concentrated suspensions were measured using ultrasonic attenuation and electroacoustic technologies. The study found that changes in concentration caused nanoscale and microparticles to exhibit opposite dispersion behaviors. The zeta potential of the particles was negative, with small effects from particle concentration and carrier liquids. These findings highlight the challenges in fully dispersing these particles for advanced applications.
In this paper, particle size distribution (PSD) of widely distributed carbonyl iron powder (CIP) particles in concentrated suspensions was measured using the ultrasonic attenuation technology to analyze their dispersion behaviors. Importantly, their zeta potential was measured using electroacoustic technology. Both visco-inertial and scattering mechanisms were considered while measuring the PSD of these particles with primary sizes ranging from about 100 nm to 10 mu m. As a result, the opposite evolution of the PSD curves was observed for nanoscale particles and microparticles, namely, d (01) increased and d (99) decreased when the concentration increased from 15 wt% to 35 wt%, whereas the trend was reversed when the concentration increased from 35 wt% to 75 wt%. This outcome means that changes in concentration cause small and large particles to have opposite dispersion behaviors. The zeta potential of the particles was negative, with absolute values not higher than 22 mV, whereas particle concentration and carrier liquids exerted some effects. This opposite evolution was found first while measuring PSD in concentrated suspensions, where non-Derjaguin, Landau, Verwey, and Overbeek interactions could markedly influence the dispersion behaviors of the widely distributed CIP particles. These results might bring forward some challenges to disperse these particles fully for some advanced applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据