4.7 Article

Orientation dependence of the effect of short-range ordering on the plastic deformation of a medium entropy alloy

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2023.145309

关键词

High entropy alloys; Short -range order; Twinning-induced plasticity; Transformation-induced plasticity; Martensitic transformation

向作者/读者索取更多资源

Multi-principal-element alloys offer a larger and richer design space for discovering new functionalities and their governing physics. The role of atomic short-range order (SRO) in the plasticity of these alloys has been investigated, and it was found that SRO affects the deformation and can alter the mechanical response.
Multi-principal-element alloys (also known as medium and high entropy alloys) offer a much larger and richer design space than conventional alloys, providing opportunities for discovering new functionalities and their governing physics. Some of these alloys exhibit an outstanding combination of high strength and ductility, linked to the activation of various deformation modes triggered by low-energy stacking faults. However, a pressing question remains: Is the plasticity of medium- and high-entropy alloys governed only by stacking fault energy, or does atomic short-range order (SRO) play a role? To answer this, we investigated how SRO affects the deformation in single-crystalline NiCoCr, with previous contradictory findings. First, we established unique experimental evidence for SRO formation in bulk single crystals using high-energy synchrotron transmission X-Ray Diffraction. By tuning the degree of SRO by aging at high temperatures, twinning density and strain-induced martensitic phase transformation can be significantly increased in the [110] and [111] orientations under tension, increasing the tensile ductility; yet, no increase was observed along the [001] orientation due to lack of TWinning-Induced Plasticity (TWIP) or TRansformation-Induced Plasticity (TRIP), indicating a strong crystallographic orientation dependence. Our first-principles thermodynamic calculations unequivocally show SRO exists and governs the observed microstructural evolution and deformation hardening behavior. Here we find direct proof that SRO triggers a simultaneous TWIP and TRIP in NiCoCr, a rare microstructural evolution path. Our findings establish that the interplay of SRO and plasticity could be exploited to alter deformation modes and yield unprecedented mechanical response in medium- and high-entropy alloys.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据