4.7 Article

Cardiac-specific overexpression of catalase attenuates lipopolysaccharide-induced cardiac anomalies through reconciliation of autophagy and ferroptosis

期刊

LIFE SCIENCES
卷 328, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2023.121821

关键词

Lipopolysaccharide; Cardiac; Oxidative stress; Autophagy; Ferroptosis; Mitochondrial

向作者/读者索取更多资源

This study aimed to investigate the effect of the antioxidant enzyme catalase on LPS-induced cardiac abnormalities and the mechanisms involved, with particular focus on the interplay between autophagy, ferroptosis, and apoptosis. The results showed that catalase can alleviate the inhibitory effect of LPS on cardiac function and improve adverse effects such as cardiac fibrosis.
Lipopolysaccharide (LPS) from Gram-negative bacteria is a major contributor to cardiovascular failure, but the signaling mechanisms underlying its stress response are not fully understood. This study aimed to investigate the effect of the antioxidant enzyme catalase on LPS-induced cardiac abnormalities and the mechanisms involved, with particular focus on the interplay between autophagy, ferroptosis, and apoptosis. Cardiac-specific catalase (CAT) overexpression and wild-type (WT) mice were stimulated with LPS (6 mg/kg, intravenous injection), and cardiac morphology and function were evaluated. Oxidative stress, ferroptosis, apoptosis, and mitochondrial status were monitored, and survival curves were plotted based on the results of LPS stimulation. The results showed that, compared with WT mice, mice overexpressing catalase had a higher survival rate under LPS stimulation. Ultrasound echocardiography, cardiomyocyte characteristics, and Masson's trichrome staining showed that LPS inhibited cardiac function and caused cardiac fibrosis, while catalase alleviated these adverse effects. LPS increased apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), increased O-2(center dot-) production, induced inflammation (TNF-alpha), autophagy, iron toxicity, and carbonyl damage, and significantly damaged mitochondria (mitochondrial membrane potential, mitochondrial proteins, and ultrastructure). These effects were significantly alleviated by catalase. Interestingly, the antioxidant N-acetylcysteine, autophagy inhibitor 3-methyladenine, and ferroptosis inhibitor lipostatin-1 all eliminated the LPS-induced contraction dysfunction and ferroptosis (using lipid peroxidation). Induction of ferroptosis could eliminate the cardioprotective effect of NAC. In conclusion, catalase rescues LPS-induced cardiac dysfunction by regulating oxidative stress, autophagy, ferroptosis, apoptosis, and mitochondrial damage in cardiomyocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据