4.6 Article

Cost-Effective and Highly Efficient Manganese-Doped MoS2 Nanosheets as Visible-Light-Driven Photocatalysts for Wastewater Treatment

期刊

LANGMUIR
卷 39, 期 20, 页码 7109-7121

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.3c00390

关键词

-

向作者/读者索取更多资源

This study found that Mn-doped MoS2 nanostructures exhibit exceptional visible-light-driven photocatalytic activity, with high efficiency in the degradation of organic dyes. Furthermore, the catalysts doped with Mn showed good stability even after multiple cycles of use. Therefore, these nanostructures have the potential to be used as catalysts for industrial wastewater treatment.
One of the main objectives in wastewater treatment and sustainable energy production is to find photocatalysts that are favorably efficient and cost-effective. Transition-metal dichalcogenides (TMDs) are promising photocatalytic materials; out of all, MoS2 is extensively studied as a cocatalyst in the TMD library due to its exceptional photocatalytic activity for the degradation of organic dyes due to its distinctive morphology, adequate optical absorption, and rich active sites. However, sulfur ions on the active edges facilitate the catalytic activity of MoS2. On the basal planes, sulfur ions are catalytically inactive. Injecting metal atoms into the MoS2 lattice is a handy approach for triggering the surface of the basal planes and enriching catalytically active sites. Effective band gap engineering, sulfur edges, and improved optical absorption of Mn-doped MoS2 nanostructures are promising for improving their charge separation and photostimulated dye degradation activity. The percentage of dye degradation of MB under visible-light irradiations was found to be 89.87 and 100% for pristine and 20% Mn-doped MoS2 in 150 and 90 min, respectively. However, the degradation of MB dye was increased when the doping concentration in MoS2 increased from 5 to 20%. The kinetic study showed that the first-order kinetic model described the photodegradation mechanism well. After four cycles, the 20% Mn-doped MoS2 catalysts maintained comparable catalytic efficacy, indicating its excellent stability. The results demonstrated that the Mn-doped MoS2 nanostructures exhibit exceptional visible-light-driven photocatalytic activity and could perform well as a catalyst for industrial wastewater treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据