4.5 Article

Control by atomic layer deposition over the chemical composition of nickel cobalt oxide for the oxygen evolution reaction

期刊

出版社

A V S AMER INST PHYSICS
DOI: 10.1116/6.0002414

关键词

-

向作者/读者索取更多资源

In this study, a plasma-enhanced atomic layer deposition (ALD) process was developed to fabricate nickel cobalt oxide thin films with excellent catalytic activity for the oxygen evolution reaction (OER). The crystal structure and chemical composition of the films were found to significantly influence electrical conductivity and electrocatalytic performance. Therefore, controlling the composition and structure of nickel cobalt oxide using ALD offers a promising approach to enhance its electrocatalytic performance.
Anion exchange membrane water electrolysis (AEMWE) is a promising technology for renewable electricity-driven water splitting toward hydrogen production. However, application of AEMWE at industrial scale requires the development of oxygen evolution reaction (OER) electrocatalysts showing long-term stability under mild alkaline conditions. Among these, nickel cobalt oxide thin films are considered promising candidates. The ideal chemical composition of these oxides remains debatable, with recent literature indicating that rock-salt NiCoO2 may exhibit similar OER activity as the traditional spinel NiCo2O4. In this work, we present the development of a plasma-enhanced atomic layer deposition (ALD) process of nickel cobalt oxide thin films (similar to 20 nm) with focus on the role of their chemical composition and crystal structure on the OER activity. The film composition is tuned using a supercycle approach built upon CoOx cycles with CoCp2 as a precursor and O-2 plasma as a co-reactant and NiOx cycles with Ni(Cp-Me)(2) as a precursor and O-2 plasma as a co-reactant. The films exhibit a change in the crystallographic phase from the rock-salt to spinel structure for increasing cobalt at. %. This change is accompanied by an increase in the Ni3+-to-Ni2+ ratio. Interestingly, an increase in electrical conductivity is observed for mixed oxides, with an optimum of (2.4 similar to 0.2) x 10(2) S/cm at 64 at. % Co, outperforming both NiO and Co3O4 by several orders of magnitude. An optimal electrocatalytic performance is observed for 80 at. % Co films. Cyclic voltammetry measurements simultaneously show a strong dependence of the OER-catalytic performance on the electrical conductivity. The present study highlights the merit of ALD in controlling the nickel cobalt oxide chemical composition and crystal structure to gain insight into its electrocatalytic performance. Moreover, these results suggest that it is important to disentangle conductivity effects from the electrocatalytic activity in future work.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据