4.7 Article

Phospholipase A2 regulates autophagy in gouty arthritis: proteomic and metabolomic studies

期刊

JOURNAL OF TRANSLATIONAL MEDICINE
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12967-023-04114-6

关键词

Gouty arthritis; Proteomic; Autophagy; Metabolomic; Lysosome

向作者/读者索取更多资源

The study reveals protein and metabolite alterations in gouty arthritis, which mainly involve lipids, phospholipase A2, and autophagic lysosomes. This research has important implications for understanding the pathological characteristics, pathways, and treatment goals of gouty arthritis.
BackgroundAcute gouty arthritis is inflammatory joint arthritis. Gouty arthritis (GA) involves multiple pathological processes. Deposition of joints by monosodium urate (MSU) crystals has been shown to play a critical role in the injury process. Due to the different effects of MSU stimulation on the joints, the exact changes in the synovial fluid are unknown. We want to explore the changes in proteins and metabolites in the joints of gouty arthritis. Regulating various functional substances in the joint can reduce inflammation and pain symptoms.Methods10 patients with gouty knee arthritis and 10 normal controls were selected from clinical, surgical cases. The biological function of the metabolome was assessed by co-expression network analysis. A molecular network based on metabolomic and proteomic data was constructed to study critical molecules. The fundamental molecular changes in the relevant pathways were then verified by western blot.ResultsProteomic analysis showed that the expressions of proteases Cathepsin B, Cathepsin D, Cathepsin G, and Cathepsin S in synovial fluid patients with gouty arthritis were significantly increased. Enrichment analysis showed a positive correlation between lysosomal and clinical inflammatory cell shape changes. Untargeted metabolomic analysis revealed that lipids and lipoids accumulate, inhibit autophagic flux, and modulate inflammation and immunity in gouty arthritis patients. It was determined that the accumulation of lipid substances such as phospholipase A2 led to the imbalanced state of the autophagy-lysosome complex, and the differentially expressed metabolites of Stearoylcarnitine, Tetradecanoylcarnitine, Palmitoylcarnitine were identified (|log2 fold change|> 1.5, adjusted P value < 0.05 and variable importance in prediction (VIP) > 1.5). The autophagy-lysosomal pathway was found to be associated with gouty knee arthritis. Essential molecular alterations of multi-omics networks in gouty knee arthritis patients compared with normal controls involve acute inflammatory response, exosomes, immune responses, lysosomes, linoleic acid metabolism, and synthesis.ConclusionsComprehensive analysis of proteomic and untargeted metabolomics revealed protein and characteristic metabolite alterations in gouty arthritis, it mainly involves lipids and lipid like molecules, phospholipase A2 and autophagic lysosomes. This study describes the pathological characteristics, pathways, potential predictors and treatment goals of gouty knee arthritis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据