4.4 Article

Counterintuitive properties of evolutionary measures: A stochastic process study in cyclic population structures with periodic environments

期刊

JOURNAL OF THEORETICAL BIOLOGY
卷 564, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2023.111436

关键词

Evolutionary graphs; Natural selection; Heterogeneous environments; Population genetics; Stochastic evolution

向作者/读者索取更多资源

Local environmental interactions play a crucial role in the success of a new mutant in structured populations. By considering spatial variations in resource concentration, this study investigates how these variations affect selection and fixation probability of advantageous or deleterious mutants. The results show that fitness heterogeneity and resource distribution period significantly impact fixation probability and fixation times. Furthermore, the study uncovers conditions under which a previously deleterious mutant becomes beneficial and highlights the influence of a "fitness shift" on fixation probability.
Local environmental interactions are a major factor in determining the success of a new mutant in structured populations. Spatial variations in the concentration of genotype-specific resources change the fitness of competing strategies locally and thus can drastically change the outcome of evolutionary processes in unintuitive ways. The question is how such local environmental variations in network population structures change the condition for selection and fixation probability of an advantageous (or deleterious) mutant. We consider linear graph structures and focus on the case where resources have a spatial periodic pattern. This is the simplest model with two parameters, length scale and fitness scales, representing heterogeneity. We calculate fixation probability and fixation times for a constant population birth-death process as fitness heterogeneity and period vary. Fixation probability is affected by not only the level of fitness heterogeneity but also spatial scale of resources variations set by period of distribution T. We identify conditions for which a previously a deleterious mutant (in a uniform environment) becomes beneficial as fitness heterogeneity is increased. We observe cases where the fixation probability of both mutant and resident types are more than their neutral value, 1/N, simultaneously. This coincides with exponential increase in time to fixation which points to potential coexistence of resident and mutant types. Finally, we discuss the effect of the 'fitness shift' where the fitness function of two types has a phase difference. We observe significant increases (or decreases) in the fixation probability of the mutant as a result of such phase shift.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据