4.4 Article

A Robust Modification to the Universal Cavitation Algorithm in Journal Bearings

期刊

出版社

ASME
DOI: 10.1115/1.4034244

关键词

axially grooved journal bearings; cavitation algorithm; Adams/Elrod model; lubricant bulk modulus; numerical stability

资金

  1. Qatar National Research Fund (QNRF)

向作者/读者索取更多资源

In the current study, a modified fast converging, mass-conserving, and robust algorithm is proposed for calculation of the pressure distribution of a cavitated axially grooved journal bearing based on the finite volume discretization of the Adams/Elrod cavitation model. The solution of cavitation problem is shown to strongly depend on the specific values chosen for the lubricant bulk modulus. It is shown how the new proposed scheme is capable of handling the stiff discrete numerical system for any chosen value of the lubricant bulk modulus (b) and hence a significant improvement in the robustness is achieved compared to traditionally implemented schemes in the literature. Enhanced robustness is shown not to affect the accuracy of the obtained results, and the convergence speed is also shown to be considerably faster than the widely used techniques in the literature. Effects of bulk modulus, static load, and mesh size are studied on numerical stability of the system by means of eigenvalue analysis of the coefficient matrix of the discrete numerical system. It is shown that the impact of static load and mesh size is negligible on numerical stability compared to dominant significance of varying bulk modulus values. Common softening techniques of artificial bulk modulus reduction is found to be tolerable with maximum two order of magnitudes reduction of b to avoid large errors of more than 3-40% in calculated results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据