4.8 Article

Boosting Oxygen Electrocatalytic Activity of Fe-N-C Catalysts by Phosphorus Incorporation

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 145, 期 6, 页码 3647-3655

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.2c12933

关键词

-

向作者/读者索取更多资源

By incorporating phosphorus atoms into the second coordination sphere, the OER activity of Fe-N-C is boosted, enabling its potential application in rechargeable Zn-air batteries.
Nitrogen-doped graphitic carbon materials hosting single-atom iron (Fe-N-C) are major non-precious metal catalysts for the oxygen reduction reaction (ORR). The nitrogen-coordinated Fe sites are described as the first coordination sphere. As opposed to the good performance in ORR, that in the oxygen evolution reaction (OER) is extremely poor due to the sluggish O-O coupling process, thus hampering the practical applications of rechargeable zinc (Zn)-air batteries. Herein, we succeed in boosting the OER activity of Fe-N-C by additionally incorporating phosphorus atoms into the second coordination sphere, here denoted as P/Fe-N-C. The resulting material exhibits excellent OER activity in 0.1 M KOH with an overpotential as low as 304 mV at a current density of 10 mA cm-2. Even more importantly, they exhibit a remarkably small ORR/OER potential gap of 0.63 V. Theoretical calculations using first-principles density functional theory suggest that the phosphorus enhances the electrocatalytic activity by balancing the *OOH/*O adsorption at the FeN4 sites. When used as an air cathode in a rechargeable Zn-air battery, P/Fe-N-C delivers a charge-discharge performance with a high peak power density of 269 mW cm-2, highlighting its role as the state-of-the-art bifunctional oxygen electrocatalyst.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据