4.8 Article

Remote-Triggered Domino-like Cyclodehydrogenation in Second-Layer Topological Graphene Nanoribbons

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 145, 期 18, 页码 10126-10135

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.3c00563

关键词

-

向作者/读者索取更多资源

We demonstrate the direct growth of topologically nontrivial graphene nanoribbons (GNRs) in the second layer by annealing designed precursor molecules over one monolayer on the Au(111) surface. The second-layer GNRs undergo domino-like cyclodehydrogenation reactions that are remotely triggered at the link.
Cyclodehydrogenation reactions in the on-surface synthesis of graphene nanoribbons (GNRs) usually involve a series uncovered metal or metal oxide surfaces. It is still a big challenge to extend the growth of second-layer GNRs in the absence of necessary catalytic sites. Here, we demonstrate the direct growth of topologically nontrivial GNRs via multistep Csp2-Csp2 and Csp2- Csp3 couplings in the second layer by annealing designed bowtie-shaped precursor molecules over one monolayer on the Au(111) surface. After annealing at 700 K, most of the polymerized chains that appear in the second layer covalently link to the first-layer GNRs that have partially undergone graphitization. Following annealing at 780 K, the second-layer GNRs are formed and linked to the first-layer GNRs. Benefiting from the minimized local steric hindrance of the precursors, we suggest that the second-layer GNRs undergo domino-like cyclodehydrogenation reactions that are remotely triggered at the link. We confirm the quasi-freestanding behaviors in the second-layer GNRs by measuring the quasiparticle energy gap of topological bands and the tunable Kondo resonance from topological end spins using scanning tunneling microscopy/spectroscopy combined with first-principles calculations. Our findings pave the avenue to diverse multilayer graphene nanostructures with designer quantum spins and topological states for

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据