4.8 Article

Electrochemical Oxidation of Methane to Methanol on Electrodeposited Transition Metal Oxides

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.3c00441

关键词

-

向作者/读者索取更多资源

Electrochemical partial oxidation of methane to methanol using transition metal (oxy)hydroxides as catalysts is investigated. CoOx, NiOx, MnOx, and CuOx are found to be active for this reaction. Systematic studies are carried out to evaluate the effect of catalyst film thickness, overpotential, temperature, and hydrodynamics on activity and methanol selectivity. It is shown that high-valence transition metal oxides are inherently active for methane activation and oxidation to methanol, and electrocatalytic oxidation enables thermodynamically favorable production of methanol.
Electrochemical partial oxidation of methane to methanol is a promising approach to the transformation of stranded methane resources into a high-value, easy-to-transport fuel or chemical. Transition metal oxides are potential electrocatalysts for this transformation. However, a comprehensive and systematic study of the dependence of methane activation rates and methanol selectivity on catalyst morphology and experimental operating parameters has not been realized. Here, we describe an electrochemical method for the deposition of a family of thinfilm transition metal (oxy)hydroxides as catalysts for the partial oxidation of methane. CoOx, NiOx, MnOx, and CuOx are discovered to be active for the partial oxidation of methane to methanol. Taking CoOx as a prototypical methane partial oxidation electrocatalyst, we systematically study the dependence of activity and methanol selectivity on catalyst film thickness, overpotential, temperature, and electrochemical cell hydrodynamics. Optimal conditions of low catalyst film thickness, intermediate overpotentials, intermediate temperatures, and fast methanol transport are identified to favor methanol selectivity. Through a combination of control experiments and DFT calculations, we show that the oxidized form of the as-deposited (oxy)hydroxide catalyst films are active for the thermal oxidation of methane to methanol even without the application of bias potential, demonstrating that high valence transition metal oxides are intrinsically active for the activation and oxidation of methane to methanol at ambient temperatures. Calculations uncover that electrocatalytic oxidation enables reaching an optimum potential window in which methane activation forming methanol and methanol desorption are both thermodynamically favorable, methanol desorption being favored by competitive adsorption with hydroxide anion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据