4.8 Article

High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution Reaction

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 145, 期 14, 页码 8052-8063

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.3c00537

关键词

-

向作者/读者索取更多资源

This study presents a macromolecule-assisted synthesis approach for single atom catalysts (SACs) that allows for the production of high-density cobalt single atoms with exceptional catalytic properties. The resulting SACs, embedded within a highly porous carbon network, exhibited significantly enhanced electrocatalytic activity for the oxygen evolution reaction (OER), with long-term stability. Experimental and theoretical results provide valuable insights into the mechanisms underlying the improved catalytic performance.
Single atom catalysts (SACs) possess unique catalytic properties due to low-coordination and unsaturated active sites. However, the demonstrated performance of SACs is limited by low SAC loading, poor metal-support interactions, and nonstable performance. Herein, we report a macromolecule-assisted SAC synthesis approach that enabled us to demonstrate high-density Co single atoms (10.6 wt % Co SAC) in a pyridinic N-rich graphenic network. The highly porous carbon network (surface area of similar to 186 m(2) g(-1)) with increased conjugation and vicinal Co site decoration in Co SACs significantly enhanced the electrocatalytic oxygen evolution reaction (OER) in 1 M KOH (eta(10) at 351 mV; mass activity of 2209 mA mg(Co)(-1) at 1.65 V) with more than 300 h stability. Operando X-ray absorption near-edge structure demonstrates the formation of electron-deficient Co-O coordination intermediates, accelerating OER kinetics. Density functional theory (DFT) calculations reveal the facile electron transfer from cobalt to oxygen speciesaccelerated OER.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据