4.8 Article

Catalyst Aggregation Matters for Immobilized Molecular CO2RR Electrocatalysts

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.2c08380

关键词

-

向作者/读者索取更多资源

In this study, the impact of catalyst aggregation on the catalytic behavior of immobilized molecular electrocatalysts for the CO2 reduction reaction (CO2RR) is investigated. The researchers used operando Raman spectroscopy to study the CO2RR mediated by a layer of cobalt phthalocyanine (CoPc) immobilized on the cathode of an electrochemical flow reactor. Their findings suggest that immobilized molecular catalysts need to be dispersed on conductive supports to prevent aggregation and obtain reliable performance data. The insights from this study were used to develop an improved CO-forming immobilized molecular catalyst, which exhibited high selectivity, partial current density, and durability in a flow cell.
Here, we detail how the catalytic behavior of immobilized molecular electrocatalysts for the CO2 reduction reaction (CO2RR) can be impacted by catalyst aggregation. Operando Raman spectroscopy was used to study the CO2RR mediated by a layer of cobalt phthalocyanine (CoPc) immobilized on the cathode of an electrochemical flow reactor. We demonstrate that during electrolysis, the oxidation state of CoPc in the catalyst layer is dependent upon the degree of catalyst aggregation. Our data indicate that immobilized molecular catalysts must be dispersed on conductive supports to mitigate the formation of aggregates and produce meaningful performance data. We leveraged insights from this mechanistic study to engineer an improved CO-forming immobilized molecular catalyst-cobalt octaethoxyphthalocyanine (EtO8-CoPc)-that exhibited high selectivity (FECO > 95%), high partial current density (JCO > 300 mA/cm2), and high durability (Delta FECO < 0.1%/h at 150 mA/cm2) in a flow cell. This work demonstrates how to accurately identify CO2RR active species of molecular catalysts using operando Raman spectroscopy and how to use this information to implement improved molecular electrocatalysts into flow cells. This work also shows that the active site of CoPc during CO2RR catalysis in a flow cell is the metal center.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据