4.8 Article

Heterogeneous Iridium Single-Atom Molecular-like Catalysis for Epoxidation of Ethylene

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 145, 期 12, 页码 6658-6670

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.2c11380

关键词

-

向作者/读者索取更多资源

Scientists have developed a selective epoxidation strategy using a heterogeneous catalyst comprising iridium single atoms, resulting in molecular-like catalysis. This strategy provides near-perfect selectivity (99%) for producing valuable ethylene oxide through pi-coordination between the iridium metal center and ethylene or molecular oxygen. The formation of five-membered oxametallacycle intermediates facilitates the high selectivity for ethylene oxide. This molecular catalysis model of single-atom catalysts can effectively inhibit the overoxidation of the desired product.
Developing efficient and simple catalysts to reveal the key scientific issues in the epoxidation of ethylene has been a long-standing goal for chemists, whereas a heterogenized molecular-like catalyst is desirable which combines the best aspects of homogeneous and heterogeneous catalysts. Single-atom catalysts can effectively mimic molecular catalysts on account of their welldefined atomic structures and coordination environments. Herein, we report a strategy for selective epoxidation of ethylene, which exploits a heterogeneous catalyst comprising iridium single atoms to interact with the reactant molecules that act analogously to ligands, resulting in molecular-like catalysis. This catalytic protocol features a near-unity selectivity (99%) to produce value-added ethylene oxide. We investigated the origin of the improvement of selectivity for ethylene oxide for this iridium single-atom catalyst and attributed the improvement to the pi-coordination between the iridium metal center with a higher oxidation state and ethylene or molecular oxygen. The molecular oxygen adsorbed on the iridium single-atom site not only helps to strengthen the adsorption of ethylene molecule by iridium but also alters its electronic structure, allowing iridium to donate electrons into the double bond pi* orbitals of ethylene. This catalytic strategy facilitates the formation of five-membered oxametallacycle intermediates, leading to the exceptionally high selectivity for ethylene oxide. Our model of single-atom catalysts featuring remarkable molecular-like catalysis can be utilized as an effective strategy for inhibiting the overoxidation of the desired product. Implementing the concepts of homogeneous catalysis into heterogeneous catalysis would provide new perspectives for the design of new advanced catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据