4.3 Article

Nucleic acid oxidative damage in Alzheimer's disease-explained by the hepcidin-ferroportin neuronal iron overload hypothesis?

出版社

ELSEVIER GMBH, URBAN & FISCHER VERLAG
DOI: 10.1016/j.jtemb.2016.06.005

关键词

Schizophrenia; Anoxic encephalopathy; Multi-infarct dementia; Parkinson's disease; IL-6; Copper

向作者/读者索取更多资源

There is strong literature support for brain metal dysregulation, oxidative stress and oxidative damage to neurons in Alzheimer's disease (AD); these processes begin early and continue throughout the disease. Here, we review current knowledge on metal dysregulation and nucleic acid oxidative damage in AD (we also include new data demonstrating increased RNA and DNA oxidative damage in hippocampus from individuals having suffered from degenerative (e.g. AD) and psychological diseases: 8-oxo-7,8-dihydroguanine (8-oxoGua) levels as determined by HPLC-EC-UV were particularly elevated in RNA and heterogeneously distributed among adjacent regions versus the control). Whereas neuronal iron accumulation occurs in aging, neuronal iron levels further increase in AD accompanied by oxidative damage, decreased copper levels, amyloid plaque formation and brain inflammation. The 'hepcidin-ferroportin iron overload' AD hypothesis links these processes together and is discussed here. Moreover, we find that most existing transgenic animal AD models only partly involve these processes, rather they are often limited to expression of mutated amyloid beta protein precursor (AbetaPP), presenilin, tau or apolipoprotein E proteins although a few models appear more relevant than others. Relevant models are likely to be crucial for refining and testing this hypothesis as well as developing new drugs. (C) 2016 Elsevier GmbH. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据