4.7 Article

A kernel canonical correlation analysis approach for removing environmental and operational variations for structural damage identification

期刊

JOURNAL OF SOUND AND VIBRATION
卷 548, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2022.117516

关键词

Structural health monitoring; Damage detection; Environmental and operational variation; Kernel canonical correlation analysis; Data normalization

向作者/读者索取更多资源

Vibration-based damage detection relies on the observation of changes in damage-sensitive dynamic features. However, dynamic features are also sensitive to environmental and operational variations (EOVs), limiting the application of linear methods in removing environmental effects. This study proposes an improved method based on kernel canonical correlation analysis (KCCA) to remove the nonlinear effects of EOVs on dynamic features, demonstrating its success in accurately identifying damage.
Vibration-based damage detection relies on the observation of changes in damage-sensitive dy-namic features. However, a major problem is that dynamic features are sensitive not only to structural damage but also to environmental and operational variations (EOVs), such as tem-perature, humidity, and operational loading. In addition, the influence of EOVs on damage -sensitive features is often nonlinear, which limits the application of many linear methods in the removal of environmental effects. To remove the nonlinear effects of EOVs on dynamic fea-tures, an improved method based on kernel canonical correlation analysis (KCCA) is proposed in this study. Using this method, the monitored data were divided into two groups. The two sets of data were then mapped into a higher-dimensional space through the kernel trick to determine their implicit linear relationship. Subsequently, two variables that share the co-occurrence in-formation of EOV effects were computed using canonical correlation analysis (CCA), and a sta-tionary residual insensitive to EOVs was obtained. Furthermore, the proposed approach was examined using a simulated 7-DOF example and then applied to real monitored data from the Z24 bridge, demonstrating that nonlinear EOV effects can be successfully removed and damage can be accurately identified.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据