4.6 Article

Phosphorus amendment alters soil arbuscular mycorrhizal fungal functional guild compositions in a subtropical forest

期刊

JOURNAL OF SOILS AND SEDIMENTS
卷 23, 期 7, 页码 2700-2711

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11368-023-03510-1

关键词

AM fungal guild; Community assembly; Diversity; Nitrogen deposition; Nutrient availability; Phosphorus addition

向作者/读者索取更多资源

Nitrogen and phosphorus amendments have significant effects on fungal diversity and community composition, but their impacts on arbuscular mycorrhizal fungal communities in forest soil are still unclear.
PurposeNitrogen (N) and phosphorus (P) amendments considerably influence fungal diversity and community composition in various ecosystems. Nevertheless, how N and P additions would change arbuscular mycorrhizal (AM) fungal community and functional guilds in forest soil remains largely unclear.Materials and methodsA 5-year N and P addition experiment was conducted in a subtropical forest of southeastern China. Soil AM fungal communities were detected by the high throughput sequencing of 18S rRNA gene-fragments. We investigated the six-seasonal responses of AM fungal diversity, community assembly pattern and functional guild composition to N and/or P amendments.Results and discussionThe AM fungal Shannon index changed from a positive (3-4 years) to a nonsignificant (4-5 years) effect under P and NP additions as the duration of fertilization increased. P addition, but not N addition, changed the AM fungal community assembly pattern from stochastic- to deterministic-dominant processes. In contrast, P and NP additions significantly influenced AM fungal functional guild components, and the relative abundances of ancestral and edaphophilic guilds increased with increasing years of fertilization. Additionally, the AM fungal guild structure was significantly affected by soil P-related parameters.ConclusionsOur results emphasize the substantial impacts of P amendment on soil AM community assembly pattern and functional guild composition. This study contributes to a better understanding of the temporal dynamics and potential ecological functioning of AM fungi under global environmental changes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据