4.8 Article

Energy harvesting from liquid cooling systems using thermo-electrochemical flow cells

期刊

JOURNAL OF POWER SOURCES
卷 563, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2023.232819

关键词

Flow thermocell; Thermal energy harvesting; Liquid cooling system; Porous electrode

向作者/读者索取更多资源

A flow thermocell with porous Ni foam electrodes is integrated into liquid cooling systems to convert temperature difference between pipes into electrical energy. The power generation capability is evaluated and the optimal flow rate is determined to achieve an efficiency of 0.304%. By reducing heat loss, the efficiency can be further increased to 0.50%.
We report a flow thermocell that is integrated into liquid cooling systems to convert the temperature difference between hot and cold pipes into electrical energy. This flow thermocell uses porous Ni foam electrodes that are inserted into the pipes carrying heated and cooled fluids. An aqueous ferricyanide/ferrocyanide electrolyte is used as a coolant fluid to generate electricity through thermally driven redox reactions on the electrodes. The power generation capability of the fabricated device is evaluated for operating conditions. As the flow rate of electrolytes having a temperature difference of 22 degrees C increase from 0.3 to 1.5 mL/s, the power density increase from 0.129 to 0.208 mW/cm2 owing to the reduction in the mass transport overpotential for power generation, and a Carnot-relative efficiency of 0.304% is obtained at an optimal flow rate of 1.2 mL/s. The efficiency can be further increased to 0.50% by reducing the heat loss from heated to cooled electrolytes with increasing the inter-electrode spacing. The efforts provide here to optimize the design and performance of flow thermocells would be useful in devising new active cooling systems that incorporate the ability to harvest heat flow in liquid cooling systems into electrical energy while simultaneously performing liquid cooling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据